Never-ending detonations could blast hypersonic craft into space

This conceptual image shows a hypersonic aircraft powered by an Oblique Detonation Wave Engine.
This conceptual image shows a hypersonic aircraft powered by an Oblique Detonation Wave Engine. (Image credit: Daniel A. Rosato, NASA)

A never-ending detonation could be the key to hypersonic flight and space planes that can seamlessly fly from Earth into orbit. And now, researchers have recreated the explosive phenomenon in the lab that could make it possible.

Detonations are a particularly powerful kind of explosion that move outward faster than the speed of sound. The massive explosion that rocked the port of Beirut in Lebanon last August was a detonation, and the widespread destruction it caused demonstrates the huge amounts of energy they can produce.

Scientists have long dreamed of building aircraft engines that can harness this energy; such craft could theoretically fly from New York to London in under an hour. But detonations are incredibly hard to control and typically last less than a microsecond, so no one has yet been able to make them a reality. 

"What we're trying to do here is to control that detonation," said Kareem Ahmed, an associate professor of mechanical and aerospace engineering at the University of Central Florida, and lead author of a new paper on the research published Monday (May 10) in the journal Proceedings of the National Academy of Sciences.

"We want to freeze it in space and harness that energy. Rather than it destroying buildings, as you saw in Lebanon, now I want to use it and produce thrust with it," Ahmed told Live Science. "If we can do that, we can travel super fast."

"There's always been the question of, "Well, if you're holding it for a millisecond or so, did you just hold it temporarily?'" Ahmed said. "You don't know if you've stabilized or not."

By carefully balancing the proportions of the air-fuel mixture, the speed of the gas flow and the angle of the ramp, they were able to generate a detonation that remained fixed in position for around 3 seconds. That's long enough to confirm that the detonation was stabilized in a fixed position and was not travelling up or downstream, Ahmed said, which is a first, major step toward realizing a real-life ODWE.

"I think the investigators have done an excellent job and look forward to further results," Lu told Live Science.

The researchers only ran their experiment for a few seconds mainly because the intensity of the detonation rapidly erodes the glass sides of the test chamber, Ahmed explained. They had to use glass in their initial tests so that they could make optical measurements of the detonation, but if they were to replace them with metal sides they should be able to run the detonation for much longer, he said.

And promisingly, Ahmed said the structure of the test apparatus is not that different from the design of a full-scale ODWE. The main challenge for the researchers now is working out how they can alter the three key ingredients of fuel mix, air speed and ramp angle while still maintaining the stability of the detonation.

"Now, we've demonstrated it is feasible, it's more of an engineering problem to explore how to sustain it over a larger operating domain," Ahmed said.

Originally published on Live Science.

Edd Gent
Live Science Contributor
Edd Gent is a British freelance science writer now living in India. His main interests are the wackier fringes of computer science, engineering, bioscience and science policy. Edd has a Bachelor of Arts degree in Politics and International Relations and is an NCTJ qualified senior reporter. In his spare time he likes to go rock climbing and explore his newly adopted home.