Earth is about to reach its farthest point from the sun. So why is it so hot?
Aphelion marks the point in our planet's orbit of the sun when it's at its maximum distance from our star. So why is it so hot out?
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Temperatures in the Northern Hemisphere might be high, but on July 6, our planet will be at its farthest point from the sun this year. It's an annual occasion called aphelion, a term that comes from the Greek words "apo" (away) and "helios" (sun), according to Almanac.
If it seems counterintuitive for our planet to be at its farthest from the sun while you endure the summer heat, consider how Earth orbits the sun and how our planet rotates.
Astronomers refer to the average Earth-sun distance as an astronomical unit (AU), which is approximately 93 million miles (150 million kilometers), as defined by the International Astronomical Union (IAU). However, Earth's slightly elliptical orbit around the sun means that each year, there is one day when Earth is closest to the sun (perihelion) and one day when it's farthest from the sun (aphelion). In 2023, perihelion occurred on Jan. 4, when Earth was 0.98 AU from the sun. On July 6, at aphelion, Earth will be 1.01 AU from the sun, according to astronomer Fred Espenak.
Perihelion and aphelion were first noticed in the 17th century by astronomer Johannes Kepler, who calculated that planets have elliptical orbits around the sun. He noted that a planet moves the fastest when it is at perihelion and the slowest at aphelion, according to NASA. That makes summer in the Northern Hemisphere a few days longer than summer in the Southern Hemisphere, NASA explains.
Although the difference between perihelion and aphelion can be millions of miles, it has very little impact on the temperatures on Earth. What causes the seasons is the 23.5-degree tilt of Earth's axis, which means the sun shines on different latitudes at different angles throughout the year. It's the axial tilt that causes the seasons. In July, the Northern Hemisphere is tilted toward the sun, receiving the full glare of our star in summer. Meanwhile, the Southern Hemisphere is tilted away from the sun, and days are shorter and colder there.
Although aphelion comes just a few weeks after the June solstice and perihelion arrives close to the December solstice, the events are not connected. The exact timing is caused by variations in the eccentricity of Earth's orbit, according to timeanddate.com, with the dates of perihelion and aphelion drifting by a day every 58 years since the 13th century.
Get the world’s most fascinating discoveries delivered straight to your inbox.

Jamie Carter is a Cardiff, U.K.-based freelance science journalist and a regular contributor to Live Science. He is the author of A Stargazing Program For Beginners and co-author of The Eclipse Effect, and leads international stargazing and eclipse-chasing tours. His work appears regularly in Space.com, Forbes, New Scientist, BBC Sky at Night, Sky & Telescope, and other major science and astronomy publications. He is also the editor of WhenIsTheNextEclipse.com.
